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Mesh Strategies for Accurate Computation of Unsteady
Spoiler and Aeroelastic Problems

Robert E. Bartels*
NASA Langley Research Center, Hampton, Virginia 23681-0001

A modification of the spring analogy scheme that uses axial linear spring stiffness with selective spring stiffen-
ing/relaxationis presented. An alternate approach tosolvingthe geometric conservationlaw is taken that eliminates
the need for storage of metric Jacobians at previous time steps. The method is applied to the computation of the
turbulent flow about an airfoil with a two-dimensional moving spoiler surface. The aeroelastic response at low
dynamic pressure of an airfoil to a single large-scale oscillation of a spoiler surface is simulated in a study of the
effect of fluid domain convergence and subiterative strategies. A critical issue in the computation of aeroelastic
response with a strongly nonlinear flowfield is shown to be the convergence of the fluid domain. It is confirmed
that it is possible to achieve accurate solutions with a very large time step for aeroelastic problems using the fluid
solver and aeroelastic integrator as discussed. Furthermore, it is shown that a local pseudo-time-based subiterative

method is essential for the computation of the present cases.

Nomenclature
ay = speed of sound
C = spring damping matrix
4] = section lift coefficient
C = section moment coefficient
Cp = pressure coefficient
c* = chord length
e = specific internal energy
F,G, H = inviscid fluxes
F,,G,, H, = viscousterms
g(1) = spring analogy boundary condition array
h = nondimensional plunge, h*/c*
i, j, k = grid point indices
J = metric Jacobian
K = spring stiffness matrix
k,, = element spring stiffness
M = grid mass matrix
m = subiterationindex
n = time-step index
D = nondimensional pressure
0 = conserved solution vector, p, pu, pv, pw, e
q = solution vector, p, u, v, w, p
qoo = dynamic pressure
Tijk = grid position vector, (x, ¥, 2);jx
t = nondimensional time t*a, / c*
uv,w = contravariant velocities
u,v,w = nondimensional Cartesian velocities u*/aj, , etc.
X, ¥,2 = nondimensional Cartesian coordinates x */c*, etc.
o = angle of attack (pitch)
S = grid displacement
Sp = spoiler deflection angle
oy = central difference operator (7 direction)
& = plunge damping ratio
Ca = pitch damping ratio
& nd = coordinates in computational space
P = density
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Introduction

EROELASTICITY is the study of the interaction of inertial,

elastic, and aerodynamic forces acting on a structure. Aeroser-
voelasticity includes the additional mutual interaction of a control
system and the aeroelastic structural response. When constructing
computational algorithms to model problems in these disciplines,
accuracy and robustness must receive due attention. This is espe-
cially true in view of recent interest in the accurate computation
of fluid-structure interaction in the presence of a strongly non-
linear flowfield. This includes examples such as the computation
of limit cycle oscillation and the aeroelastic response of a struc-
ture due to large-scale control surface motion. To address these
issues of robustness and accuracy, recent aeroelastic research has
focused on the development of new algorithms that integrate the
structural equations of motion in synchronization with the aero-
dynamic equations of motion. Among the methods used or pro-
moted are the closely coupled lagged approach™? to updating the
structure equations and the implicititerative coupling of both struc-
ture and fluid.>* Other approaches recently evaluated include the
arbitrary Lagrangian-Eulerian®® and the implicit continuous-fluid
Eulerian methods.” Recent mesh deformation algorithm develop-
ment has emphasized the robustness and efficiency necessary for
coupled structure-fluid time-marching computations®° However,
in the discussion of fluid-structure coupling, often the convergence
of the fluid domain, as a distinctly separate issue from the coupling,
is not specifically addressed.

The purpose of the present paper is to revisit old approaches to
mesh deformation and the integration of the structural equations of
motion. In particular the spring analogy mesh scheme is revisited
with modifications that enhance its value for structured grids with
complex geometry. The finite-dimensional state-space predictor-
corrector method!? also merits renewed consideration in view of
recent advances in computational fluid solvers.

Several modifications of the typical approach to computational
fluid dynamics with a deforming mesh have been made. For un-
steady problems, a self-consistentapproach to the Jacobian of the
coordinatetransformationis to computeit by solvinganindependent
equationcalled the geometric conservationlaw (GCL).>!"' InRefs. 3
and 4, the GCL fluxes are retained in the Navier-Stokes equations
as source terms, replacing the time rate of change of the volume.
Not only does this result in self-consistency, it also eliminates the
need for storage of either the discrete time derivative of the Jacobian
or of the Jacobian itself at several previous time steps. A variation
of that approach is used here. The metric fluxes are retained in the
present scheme on both the left- and right-hand sides of the discrete
approximate factorized equations in a cell-centered finite volume
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discretization of the equations. In the references cited earlier, the
flow equations were solved in finite difference form using central
differencing of the flux terms with explicit and implicit artificial
dissipation. Several options are also available in the present code
for construction of fluxes and time accuracy. Third-order upwind
Roe’s flux differencing and second-orderbackward time differenc-
ing are used here. Subiterationseitherinclude the physical time step
(#-TS subiteration) only or both physical and pseudo time step based
on local Courant-Friedrichs-Lewy (CFL) number for convergence
acceleration (7-TS subiteration). This affords the opportunity to as-
sess the effect of the increased robustness of a higher-orderupwind
scheme with pseudotime subiterationson the simulationof unsteady
aeroelasticresponse to a nonlinear flowfield. Finally, the present de-
forming mesh scheme is used with a time-accurate field equation
turbulence model. Another aspect of this work is the modification
of the spring analogy scheme with axial stiffness for use with a
structured grid. References 7 and 12-15 give recent examples of
its use in aeroelastic computations with structured and unstructured
grids. There are advantages to the spring analogy, most notably its
simplicity and ability to smooth grids. However, it does not ensure
positivity of control volumes and in its most typical form is mem-
ory intensive. The modified spring analogy using nonlinear torsion
stiffness has been shown to preclude nonpositive control volume
(and, thus, the more restrictive case of grid point crossing).9 It does
not alone allow spacing control and does not include the smoothing
available from the axial spring analogy. Thus, it would seem that
an optimal approach in the context of the spring analogy would be
a combination of several stiffness types. It will be shown that in its
present form the spring analogy scheme with linear axial stiffness
is efficient and with a structured grid also allows some savings in
memory. It can, therefore, provide a starting point for a more elabo-
rate deforming mesh scheme. It is not, however, without problems.
Nonpositive grid volumes can still be encountered. A partial solu-
tion is presented that is useful for at least mildly complex geometry,
but it must be emphasized that the present work is considered the
initial step in the developmentof a robust deforming mesh scheme.
The intentionis that future developments will include the capability
of grid adaptationand torsion stiffness that will allow more complex
geometry and control over grid orthogonality.

The time-accurate thin-layer Navier-Stokes equations for a dy-
namically deforming mesh will be presented first. This will be fol-
lowed by a discussion of the mesh scheme, the method of structural
integration, and results.

Thin-Layer Navier-Stokes Equations

The finite volume thin-layer Navier-Stokes code that forms the
basis for this new developmentis CFL3D version 5.0. This code has
been used extensively to simulate many unsteady two- and three-
dimensionalsingle and multizonal problems.!®!” Rigid mesh move-
ment capability has been developed previously.'® The code includes
multigrid and grid sequencing capability and has available many
choices of turbulence model. Because the form of the thin-layer
Navier-Stokes equations and the solution procedures used here are
not typical, the equations and details of the solution will be pre-
sented. The differentialform of the equationsin a general deforming
coordinate system is written in a manner similar to that in Ref. 4,
namely,
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Note that the time derivative on the left-hand side of Eq. (1) is not
written in strong conservation-law form and that the last bracketed

item in the residual [Eq. (2)] is composed of the grid speed fluxes
from the GCL. Letting
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and constructing the remaining inviscid and diffusive fluxes, we
obtain the complete equation set.

The residual on the right-hand side of Eq. (2) is linearized about
the most recent subiteration m and the resulting equations are ap-
proximately factored. The resulting discrete equationstake the form
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In the preceding equations, M =3 Q/dq, A* =a(F — F,)/dq, and
so forth. The solution vector is defined by Ag™ =¢™*! — ¢". Be-
cause the fluxes contained in Eq. (2) (last term) and (5) are similar
in form to the fluxes of the flow quantities, both can be computed
easily within the same subroutines. This has required the addition
of 20-40 coding lines to each of the inviscid flux subroutines (right-
and left-hand side terms). Furthermore, the desired first- or second-
order accuracy in time is automatically achieved by making use of
the metric time derivatives already being used in the spatial fluxes
of conserved flow quantities. Because the volumes at several pre-
vious time steps are not stored, very little additional memory and
no change in the overall code data structure is required. Using this
approachdoes require that Eq. (5) and the metric fluxes of Eq. (2) be
recomputedat each subiterationand added to Egs. (4a-4c), resulting
in a small added computational effort.

The metric fluxes in the new terms are evaluated at cell face cen-
ters and are also differenced in time in a way that is consistent with
the temporal differencing of conserved flow variables. This results
in consistency between new metric fluxes of Eq. (5), the metric time
derivativesin the physical fluxes and the integral of J~! Q, over the
control volume, and, finally, in a temporally and spatially consistent
solution of the GCL. The value of the metric Jacobian at time step
n + 1isused everywherein Eqgs. (2), (4), and (5). Equations (4) also
include local CFL-based pseudo time stepping (z-TS subiteration)
for convergence.Based on the values of ¢ and ¢’, the option of first-
or second-orderphysicaland pseudo time stepping can be exercised.
In the present computations the temporal discretization of Eq. (1)
is accomplished via second-order backward differencing, that is,
¢ =é. The discrete inviscid fluxes use third-order upwind-biased
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Roe’s flux difference splitting and a minmod flux limiter. Multigrid
is used in the following computations.

CFL3D version 5.0 includes many turbulence models. The tur-
bulence model used in the present computations is the Spalart-
Allmaras field equationmodel, primarily because of its robustnessat
large-time-step size. The differential equation for eddy viscosity in
the Spalart- Allmaras model is solved in nonconservationform. This
simplifies the procedure when using an unsteady field equation tur-
bulence model becauseno additional treatment of metrics other than
consistent time differencingis required for an unsteady solution.

Mesh Scheme

The mesh scheme is a modification of the spring analogy using
axial spring stiffness. The approach of Batina'? can be written, in
general, for an unsteady problem,

MS&+ C5+ K8 =g(t) (6)

In the present formulation M =C =0. The element stiffness would
be defined by k;; =1/1;; wherel;; =|lr; — r,-||£/2 and i and j repre-
senttwo adjacentnodes. Foran unstructuredgrid, storage of stiffness
values based on the current locations of each node pair is required.
The spring stiffness would be updated as the mesh deforms. For a
structured grid the problem is somewhat simplified. Spring stiffness
in the mesh interior can be controlled by the spacing of the appro-
priate boundary grid points. For instance, if the nodes at (i, j, k) and
(i, j, k + 1) are considered and if boundary spacing at boundaries
i =1andi =i, are used,

kw =1/ les 1k 7

where m =k + 1 designates in this case the volume edge between
the k and k + 1 grid points, and
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Because these stiffness values are set at the start of the computations
they do not vary in time. They also require storage only for each of
the six computationalboundaries. Linear spring stiffness allows the
possibility of grid point crossings, but because this is a restricted
case of the general problem of grid lines crossing, the better solution
is the addition of nonlinear torsion stiffness®° This can be added
to the present spring stiffness at a future time. Finally, note that the
axial stiffness approach used here results in smoothing of the mesh
and also allows adaptation based on the flow solution.®!?

The problem of grid collapse around convex surfaces is handled
by selectively increasing/decreasing stiffness based on surface cur-
vature. Stiffness valuesin two coordinate planes normal to a surface
are varied based on surface curvature in the coordinate projection of
those planes onto the surface. The final mesh is the weighted com-
bination of the two planar solutions. Take, for example, a £n-plane
solid surface at k =1 from which curvature informationis required
to constructthe grid. Mathematically,the expressionforinteriorgrid
point location can be written

rijk _ (1 - ‘9)[fl lemlrml + fZZI_(ranrnZ] +eP (9)
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where
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In Eq. (9) k1 =3k, e”€1"¢ and &, =1k,e 1" for the vol-
ume edges including the endpoints k + 1 and k-1, and &k, =
k1, ko =k,y otherwise. The index m1 in the summation ranges
over the four nearest grid points adjacent to ijk in the & plane
(indices j, k) and index m?2 in the n¢ plane (indices i, k). The con-
stant C is a gain factor that adjusts sensitivity to surface curvature.
The surface curvature parameters Az and A, can be arrived at by
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S

Fig. 1 Orientation of surface and interior grids.

considering, for example, the surface grids of Fig. 1 in the & (j in-
dex) direction. A measure that accounts, at grid i, j, k, for convex
or concave curvature at the surface point i, j and k =1 is

A, = sin 6 (10)
* T T—coso
In terms of grid geometry this is
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where Ar; =ri.y —rio, Ar; =rj4
Ar;y =r; 4, —ri, Ari_ =r;_, —r;, etc.

In practice, the valuesof A and A, arelimited in upper and lower
bound, currently A; = min(C;A¢, 0) or Ay =max(C A, —12),
and similarly for A,,. An update of f1(A;) and f,(A,) are required
once per time step for each surface or grid edge plane. This leaves
only the computation of Eq. (9) to solve for the interior of the
mesh. This is a linear equation typically requiring 1-2 iterations
of a Gauss-Seidel procedure for moderate motions of the grid. Fi-
nally, the function P defines an outward normal to the surface.
Setting ¢ = exp(—C,k) ensures that at least several grid points near
the surface remain orthogonal to the surface. The complete mesh
solution per time step involves an update using initialization of the
mesh via transfinite interpolation and a second step involving one
to two iterations of Eq. (9) to arrive at the final mesh.

—rj_, Arj+ =Tj+1 —Tj,

Aeroelastic Method

The-time marching simulation of the aeroelastic responsesis ob-
tained using the finite-dimensional state-space predictor-corrector
method, described in Refs. 10 and 20, that solves the decoupled
modal structural equations of motion. Several versions of the finite-
dimensional state-space variable method are presented in Refs. 10
and 20. The predictor step marches the structure using the solution
of the modal equationsat step n to get the surface deflection at time
step n + 1. This solution is based on a second-order (trapezoidal)
extrapolationof the generalized aerodynamicforcesatn andn — 1.
This provides the surface shape for a recomputation of the fluid
mesh and the fluid-domain solution at n + 1. After a solution of
the fluid domain involving multiple subiterations, the corrector step
then solves the modal equations at the time step n + 1 using the
averaged generalized forces atn and n + 1.

Results

The results of this paper are aimed at assessing what is required
to compute unsteady two-dimensional spoiler and coupled spoiler
aeroelastic problems. Specifically, the issues addressed are the ge-
ometric modeling of spoilers and the convergence and time-step
behavior of the present fluid and aeroelastic solvers. In the follow-
ing cases the airfoil/spoiler geometry is based on the benchmark
active controls technology (BACT) NACA 0012 test model.?' The
spoileris modeled here as a ramp and backward-facingstep. A two-
dimensional fluid mesh is shownin Fig. 2. The backward step behind
the spoiler trailing edge has a slight slope modeled by spacing three
grid points between the spoiler trailing edge and the wing surface.
This clearly does not model the cavity beneath the spoiler, nor the
gap between the spoilerand flap leadingedge. As the spoiler moves,
the spacing over the backward step is constrained via arc length to
remain more or less true to the original grid spacing over the wing.
Spoiler motion is typically accomplished by shearing wing surface
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Fig. 2 Two-dimensional mesh for oscillating spoiler study.
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Fig. 3 Time step study for two-dimensional NACA 0012 airfoil
with oscillating spoiler: Mo = 0.77, o = 0 deg, and a5, = —5 —
4.5sin(2 Mo kt) deg.

grids or, at best, by using a two-coordinate modal control surface
motion, either of which results in surface warping. The present ap-
proach embodies true rigid-body control surface rotation.

The unsteady Navier-Stokes solutions in Fig. 3 investigate time
step convergence, which is important before launching into more
costly three-dimensionaloscillating spoiler computations. They are
especially challenging because they involve the growth and col-
lapse of a large region of recirculating flow. They require signifi-
cantly more subiterations (50-60 at 64 time steps per cycle). This
computation also required tuning of the 7-TS CFL for extremely
large physical time steps to reach reasonable accuracy at each time
step. Nevertheless, the convergence at each time step was carefully
monitored. The L, norm was maintained at approximately 10~7 or
better at each time step. This required 14 subiterations per time step
at256 time steps per cycle and 4 subiterationsat 1024 time steps per
cycle. As can be seen in Fig. 3, there is no discernable differencein
the lift and moment coefficients in going from 1024 to 64 time steps
percycleof spoileroscillation. However, the out-of-phasepart of the
transformof the unsteady pressurecoefficient shows some reduction
in accuracy for the larger time steps. Although all of the computa-
tions appear to be sufficiently accurate for engineering purposes, it
is clear that for high accuracy, 260-300 time steps/cycle or more
are required. This is true, for example, for simulation of response
to control system input at a condition near flutter onset, which is
typically sensitive to the phase angle of the aerodynamic forcing.

The simulation of an aeroelastic transient induced by a single
oscillation of a two-dimensional spoiler for an airfoil subject to
pitch and plunge is presented in Figs. 4-6 and Tables 1 and 2. This
case provides a nominal test of the performance of the complete
fluid-mesh-structure solution technique. The aeroelastic response
is due to a single large-scale asymmetric oscillation of the spoiler.
The spoiler was oscillated at approximately the free vibration fre-
quency of the plunge mode. The dynamic pressure (¢ =20 psf) is
low enough to give a moderate aeroelastic response for this size of
spoiler motion. After an aeroelasticresponse using the mesh shown

Tablel Computed damping ratios for two aeroelastic modes®

Time steps No. of fluid domain
At (per plunge cycle) subiterations G Ca
0.0092 8192 2 0.02781 0.05229
0.0366 2048 6 0.02781 0.05230
0.1465 512 12 0.02779  0.05228
0.5859 128 32 0.02761 0.05218

*Same model and condition as Fig. 4.

Table2 Effect of number of subiterations on damping ratio®

Time steps No. of fluid domain
At (per plung cycle) subiterations G
0.5859 128 32 0.02761
0.5859 128 20 0.02750
0.5859 128 8 0.02648

*Same model and condition as Fig. 4.

0 700 200 300

Fig. 4 Computed aeroelastic response due to a single spoiler oscillation
(9.5-deg excursion), two-dimensional BACT model: M, = 0.77, a =
0 deg,goo =20 psf,and Us =373 fps.
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Fig. 5 Computed aeroelastic response due to a single spoiler oscillation
(same model and condition as Fig. 4, At = 0.5859).
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Fig. 6 Comparison of #-TS and 7-TS time stepping for aeroelastic re-
sponse (same model and condition as Fig. 4).
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in Fig. 2 was computed, it was found that the aeroelastic transient
response was sensitive to grid spacing asymmetry between the up-
per and lower surfaces. A mesh that is symmetric and has the same
spacing over both the upper and lower surface was used as the final
grid. This grid had dimensions 319 X 105. Furthermore, the quality
of the grid especially around the spoiler region was found to consid-
erably impact the time-step convergenceof the aeroelasticsolutions.
After some effort at improving grid quality, the described solutions
were obtained.

The solutions of Fig. 4 give transient pitch and plunge response
calculated with four time-step sizes. Note that the maximum CFL
number for the largest time step (At =0.5859) is approximately
2 X 10°. The convergence of the plunge mode response with time
step size reductioncan be clearly seen in the detailed inset in Fig. 4.
Table 1 summarizes data from these runs. The fluid-domain subit-
erations shown in Table 1 are what were required to converge the
solution (L, norm of density) to around 1077 at each time step. Be-
tween 2048 and 8192 time steps/plunge cycle, there is virtually no
difference in the damping ratios. Between the largest and smallest
time steps, the difference is less than 1%. The convergence of the
aeroelastic response with number of fluid-domain subiterations at
the largest time step can be seen in Fig. 5. It appears from Fig. 5
that 32 subiterations of the fluid domain per time step results in a
very nearly converged solution. One can also see from Fig. 5 and
from Table 2 that if less accuracy is required, fewer subiterations
will also resultin a solution. On the other hand, a computation that
was performed using only a physical time step (#-TS subiteration)
was unstable for time steps larger than At =0.001. The solution
at At =0.0012, shown in Fig. 6, diverged shortly after the final
time step shown. Even if it had not diverged, this small time step
makes this problem solution infeasible with the 7-TS method, and
necessitates CFL-based local time step subiteration (identified as
7-TS in Fig. 6). The accuracy of the ¢-TS solution is clearly not
established with only one computation. However, if the solutions
with 7-TS subiterations are converging to the correct solution, as it
would appear, the ¢-TS solutioneven at At =0.001 does not appear
to be more accurate than the 7-TS solution at a time step 100 times
larger.

Conclusions

A numerical scheme for the Euler and Navier-Stokes equations
in a general dynamically deforming coordinate system thatincorpo-
rates the geometric conservation law into the governing equations
hasbeen evaluatedin this paper. By casting the equationsin the form
shown here, a somewhat more economical scheme is obtained for
problems requiring deforming meshes. A structured mesh scheme,
based on the spring analogy, has been applied to moderately com-
plex surface geometry. Its performance has been assessed for time
steps spanning a large range, applied to problems from oscillat-
ing two-dimensional spoilers to the transient response of an airfoil.
The spoilers have been modeled as a ramp and backward step and
the oscillation by true rigid-body rotation. The mesh scheme does
not appear to result in mesh entanglement for the geometry and
mesh motion considered here even with an extremely large time
step (CFL= 2 X 10°). This is due to the use of mesh initialization
via transfinite interpolation, to the fluid mesh near the moving sur-
face undergoing motion prescribed by the surface, and to the selec-
tive relaxing/stiffening of the spring stiffness in the spring analogy
scheme. Even at very large time steps, the scheme appears to retain
considerable accuracy if a sufficient number of 7-TS subiterations
are used. In the case of strongly nonlinear flow driven by spoiler
oscillation, numerical results have shown that the error due to an in-
creasing time step that does arise is mainly in the out-of-phasecom-
ponent. This is expected for a second-order time-accurate scheme
and has implications for the accurate computation of flutter onset
and other aeroelastic phenomena. Finally, aeroelastic capability has
been demonstrated for the damped transients of a wing having pitch
and plunge modes. The case computed was at low dynamic pressure
in which the modes were initially perturbed by a single-large-scale
oscillation of the spoiler surface. The results show that accuracy
at very large-time-step sizes, similar to that used in the oscillating

spoiler computations, can be achieved here as well. This suggests
that for these cases and this solution method, the convergenceof the
fluid solution is a dominant factor in the accuracy of the structure-
fluid solution. Again, this is possible because of the 7-TS flowfield
solution. Because of stability limitations, the largest time step pos-
sible with #-TS subiteration was at least 600 times smaller than the
largest time step with 7-TS subiteration.
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