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Mesh Strategies for Accurate Computation of Unsteady
Spoiler and Aeroelastic Problems
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A modi� cation of the spring analogy scheme that uses axial linear spring stiffness with selective spring stiffen-
ing/relaxationis presented. An alternateapproachto solvingthe geometric conservation law is takenthateliminates
the need for storage of metric Jacobians at previous time steps. The method is applied to the computation of the
turbulent � ow about an airfoil with a two-dimensional moving spoiler surface. The aeroelastic response at low
dynamic pressure of an airfoil to a single large-scale oscillation of a spoiler surface is simulated in a study of the
effect of � uid domain convergence and subiterative strategies. A critical issue in the computation of aeroelastic
response with a strongly nonlinear � ow� eld is shown to be the convergence of the � uid domain. It is con� rmed
that it is possible to achieve accurate solutions with a very large time step for aeroelastic problems using the � uid
solver and aeroelastic integrator as discussed. Furthermore, it is shown that a local pseudo-time-based subiterative
method is essential for the computation of the present cases.

Nomenclature
a ¤

1 = speed of sound
C = spring damping matrix
cl = section lift coef� cient
cm = section moment coef� cient
cp = pressure coef� cient
c ¤ = chord length
e = speci� c internal energy
F̂ , Ĝ , Ĥ = inviscid � uxes
F̂v , Ĝ v , Ĥv = viscous terms
g(t ) = spring analogy boundary condition array
h = nondimensionalplunge, h ¤ /c ¤

i, j, k = grid point indices
J = metric Jacobian
K = spring stiffness matrix
km = element spring stiffness
M = grid mass matrix
m = subiteration index
n = time-step index
p = nondimensionalpressure
Q = conserved solution vector, q , q u, q v , q w , e
q = solution vector, q , u, v , w , p
q 1 = dynamic pressure
ri jk = grid position vector, (x , y, z)i j k

t = nondimensional time t ¤ a ¤
1 / c ¤

U, V , W = contravariantvelocities
u, v, w = nondimensionalCartesian velocities u ¤ /a ¤

1 , etc.
x , y, z = nondimensionalCartesian coordinates x ¤ /c ¤ , etc.
a = angle of attack (pitch)
d = grid displacement
d sp = spoiler de� ection angle
d g = central difference operator ( g direction)
f h = plunge damping ratio
f a = pitch damping ratio
n , g , f = coordinates in computational space
q = density
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Introduction

A EROELASTICITY is the study of the interaction of inertial,
elastic, and aerodynamicforcesacting on a structure.Aeroser-

voelasticity includes the additional mutual interaction of a control
system and the aeroelastic structural response. When constructing
computational algorithms to model problems in these disciplines,
accuracy and robustness must receive due attention. This is espe-
cially true in view of recent interest in the accurate computation
of � uid–structure interaction in the presence of a strongly non-
linear � ow� eld. This includes examples such as the computation
of limit cycle oscillation and the aeroelastic response of a struc-
ture due to large-scale control surface motion. To address these
issues of robustness and accuracy, recent aeroelastic research has
focused on the development of new algorithms that integrate the
structural equations of motion in synchronization with the aero-
dynamic equations of motion. Among the methods used or pro-
moted are the closely coupled lagged approach1,2 to updating the
structure equationsand the implicit iterative coupling of both struc-
ture and � uid.3,4 Other approaches recently evaluated include the
arbitrary Lagrangian–Eulerian5,6 and the implicit continuous-�uid
Eulerian methods.7 Recent mesh deformation algorithm develop-
ment has emphasized the robustness and ef� ciency necessary for
coupled structure–� uid time-marching computations.8,9 However,
in the discussionof � uid–structure coupling, often the convergence
of the � uid domain, as a distinctlyseparate issue from the coupling,
is not speci� cally addressed.

The purpose of the present paper is to revisit old approaches to
mesh deformation and the integration of the structural equations of
motion. In particular the spring analogy mesh scheme is revisited
with modi� cations that enhance its value for structured grids with
complex geometry. The � nite-dimensional state-space predictor–
corrector method10 also merits renewed consideration in view of
recent advances in computational � uid solvers.

Several modi� cations of the typical approach to computational
� uid dynamics with a deforming mesh have been made. For un-
steady problems, a self-consistent approach to the Jacobian of the
coordinatetransformationis to computeit by solvingan independent
equationcalledthegeometricconservationlaw (GCL).6,11 In Refs. 3
and 4, the GCL � uxes are retained in the Navier–Stokes equations
as source terms, replacing the time rate of change of the volume.
Not only does this result in self-consistency, it also eliminates the
need for storageof either the discrete time derivativeof the Jacobian
or of the Jacobian itself at several previous time steps. A variation
of that approach is used here. The metric � uxes are retained in the
present scheme on both the left- and right-hand sides of the discrete
approximate factorized equations in a cell-centered � nite volume
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discretization of the equations. In the references cited earlier, the
� ow equations were solved in � nite difference form using central
differencing of the � ux terms with explicit and implicit arti� cial
dissipation. Several options are also available in the present code
for construction of � uxes and time accuracy. Third-order upwind
Roe’s � ux differencing and second-orderbackward time differenc-
ing are used here. Subiterationseither include the physical time step
(t-TS subiteration) only or both physicaland pseudotime step based
on local Courant–Friedrichs–Lewy (CFL) number for convergence
acceleration(s -TS subiteration). This affords the opportunity to as-
sess the effect of the increased robustnessof a higher-orderupwind
schemewith pseudotime subiterationson the simulationof unsteady
aeroelasticresponse to a nonlinear � ow� eld. Finally, the present de-
forming mesh scheme is used with a time-accurate � eld equation
turbulence model. Another aspect of this work is the modi� cation
of the spring analogy scheme with axial stiffness for use with a
structured grid. References 7 and 12–15 give recent examples of
its use in aeroelasticcomputationswith structured and unstructured
grids. There are advantages to the spring analogy, most notably its
simplicity and ability to smooth grids. However, it does not ensure
positivity of control volumes and in its most typical form is mem-
ory intensive. The modi� ed spring analogy using nonlinear torsion
stiffness has been shown to preclude nonpositive control volume
(and, thus, the more restrictive case of grid point crossing).9 It does
not alone allow spacing control and does not include the smoothing
available from the axial spring analogy. Thus, it would seem that
an optimal approach in the context of the spring analogy would be
a combination of several stiffness types. It will be shown that in its
present form the spring analogy scheme with linear axial stiffness
is ef� cient and with a structured grid also allows some savings in
memory. It can, therefore, provide a starting point for a more elabo-
rate deforming mesh scheme. It is not, however, without problems.
Nonpositive grid volumes can still be encountered. A partial solu-
tion is presented that is useful for at least mildly complex geometry,
but it must be emphasized that the present work is considered the
initial step in the developmentof a robust deforming mesh scheme.
The intention is that future developmentswill include the capability
of grid adaptationand torsionstiffness that will allow more complex
geometry and control over grid orthogonality.

The time-accurate thin-layer Navier–Stokes equations for a dy-
namically deforming mesh will be presented � rst. This will be fol-
lowed by a discussionof the mesh scheme, the method of structural
integration, and results.

Thin-Layer Navier–Stokes Equations
The � nite volume thin-layer Navier–Stokes code that forms the

basis for this new development is CFL3D version5.0. This code has
been used extensively to simulate many unsteady two- and three-
dimensionalsingleand multizonalproblems.16,17 Rigid mesh move-
ment capabilityhas been developedpreviously.18 The code includes
multigrid and grid sequencing capability and has available many
choices of turbulence model. Because the form of the thin-layer
Navier–Stokes equations and the solution procedures used here are
not typical, the equations and details of the solution will be pre-
sented.The differentialform of the equationsin a generaldeforming
coordinate system is written in a manner similar to that in Ref. 4,
namely,
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Note that the time derivative on the left-hand side of Eq. (1) is not
written in strong conservation-lawform and that the last bracketed

item in the residual [Eq. (2)] is composed of the grid speed � uxes
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and constructing the remaining inviscid and diffusive � uxes, we
obtain the complete equation set.

The residual on the right-hand side of Eq. (2) is linearized about
the most recent subiteration m and the resulting equations are ap-
proximatelyfactored.The resultingdiscreteequationstake the form
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for the residual just de� ned, and

X = ¡
³

@

@n

³
n t

J

´
+

@

@g

³
g t

J

´
+

@

@f

³
f t

J

´´
(5)

In the preceding equations, M̃ = @Q / @q , A ¤ =@( F̂ ¡ F̂ v ) / @q, and
so forth. The solution vector is de� ned by D qm =qm + 1 ¡ qm . Be-
cause the � uxes contained in Eq. (2) (last term) and (5) are similar
in form to the � uxes of the � ow quantities, both can be computed
easily within the same subroutines. This has required the addition
of 20–40 coding lines to each of the inviscid � ux subroutines(right-
and left-hand side terms). Furthermore, the desired � rst- or second-
order accuracy in time is automatically achieved by making use of
the metric time derivatives already being used in the spatial � uxes
of conserved � ow quantities. Because the volumes at several pre-
vious time steps are not stored, very little additional memory and
no change in the overall code data structure is required. Using this
approachdoes require that Eq. (5) and the metric � uxes of Eq. (2) be
recomputedat each subiterationand added to Eqs. (4a–4c), resulting
in a small added computationaleffort.

The metric � uxes in the new terms are evaluated at cell face cen-
ters and are also differenced in time in a way that is consistentwith
the temporal differencing of conserved � ow variables. This results
in consistencybetween new metric � uxes of Eq. (5), the metric time
derivatives in the physical � uxes and the integral of J ¡ 1 Q s over the
controlvolume, and, � nally, in a temporallyand spatiallyconsistent
solution of the GCL. The value of the metric Jacobian at time step
n + 1 is used everywhere in Eqs. (2), (4), and (5). Equations (4) also
include local CFL-based pseudo time stepping ( s -TS subiteration)
for convergence.Based on the values of u and u 0 , the option of � rst-
or second-orderphysicaland pseudotime steppingcan be exercised.
In the present computations the temporal discretization of Eq. (1)
is accomplished via second-order backward differencing, that is,
u = 1

2 . The discrete inviscid � uxes use third-order upwind-biased
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Roe’s � ux difference splitting and a minmod � ux limiter. Multigrid
is used in the following computations.

CFL3D version 5.0 includes many turbulence models. The tur-
bulence model used in the present computations is the Spalart–
Allmaras � eld equationmodel,primarilybecauseof its robustnessat
large-time-step size. The differential equation for eddy viscosity in
the Spalart–Allmaras model is solved in nonconservationform. This
simpli� es the procedure when using an unsteady � eld equation tur-
bulencemodel becauseno additionaltreatmentof metrics other than
consistent time differencing is required for an unsteady solution.

Mesh Scheme
The mesh scheme is a modi� cation of the spring analogy using

axial spring stiffness. The approach of Batina12 can be written, in
general, for an unsteady problem,

M ¨d + C Çd + K d = g(t) (6)

In the present formulation M =C =0. The element stiffness would
be de� ned by ki j =1/ li j where li j = k r j ¡ ri k 1/ 2

2 and i and j repre-
sent two adjacentnodes.Foranunstructuredgrid, storageof stiffness
values based on the current locations of each node pair is required.
The spring stiffness would be updated as the mesh deforms. For a
structuredgrid the problem is somewhat simpli� ed. Spring stiffness
in the mesh interior can be controlled by the spacing of the appro-
priate boundarygrid points. For instance, if the nodes at (i, j, k) and
(i, j, k + 1) are considered and if boundary spacing at boundaries
i =1 and i =imax are used,

km = 1/ lk + 1,k (7)

where m =k + 1 designates in this case the volume edge between
the k and k + 1 grid points, and

lk + 1,k = f ( k rk + 1 ¡ rk k 2)
¡ 1
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¡ 1
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f =
imax ¡ i

imax ¡ 1
(8)

Because these stiffnessvalues are set at the start of the computations
they do not vary in time. They also require storage only for each of
the six computationalboundaries.Linear spring stiffness allows the
possibility of grid point crossings, but because this is a restricted
case of the generalproblemof grid lines crossing,the better solution
is the addition of nonlinear torsion stiffness.8,9 This can be added
to the present spring stiffness at a future time. Finally, note that the
axial stiffness approach used here results in smoothing of the mesh
and also allows adaptation based on the � ow solution.8,19

The problem of grid collapse around convex surfaces is handled
by selectively increasing/decreasing stiffness based on surface cur-
vature.Stiffness values in two coordinateplanes normal to a surface
are varied based on surface curvature in the coordinateprojectionof
those planes onto the surface. The � nal mesh is the weighted com-
bination of the two planar solutions. Take, for example, a n g -plane
solid surface at k =1 from which curvature information is required
to constructthegrid.Mathematically,theexpressionfor interiorgrid
point location can be written
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(1 ¡ e )
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where

f1 = eC1 K n , f2 = eC1 K g

In Eq. (9) k̄m1 = 1
2
km1e ¡ C1 K n and k̄m2 = 1

2
km2e ¡ C1 K g for the vol-

ume edges including the endpoints k + 1 and k ¡ 1, and k̄m1 =
km1 , k̄m2 =km2 otherwise. The index m1 in the summation ranges
over the four nearest grid points adjacent to i jk in the n f plane
(indices j, k) and index m2 in the g f plane (indices i, k). The con-
stant C1 is a gain factor that adjusts sensitivity to surface curvature.
The surface curvature parameters K n and K g can be arrived at by

Fig. 1 Orientation of surface and interior grids.

considering, for example, the surface grids of Fig. 1 in the n ( j in-
dex) direction. A measure that accounts, at grid i, j, k, for convex
or concave curvature at the surface point i, j and k =1 is

K n =
sin h

1 ¡ cos h
(10)

In terms of grid geometry this is
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D ri ¢ ( D r j + £ D r j ¡ )
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(11)
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where D ri = ri +1 ¡ ri ¡ 1, D r j = r j +1 ¡ r j ¡ 1, D r j + = r j +1 ¡ r j ,
D ri + =ri + 1 ¡ ri , D ri ¡ =ri ¡ 1 ¡ ri , etc.

In practice, the valuesof K n and K g are limited in upper and lower
bound, currently K n = min(C1 K n , 0) or K n = max(C1 K n , ¡ 12),
and similarly for K g . An update of f1( K n ) and f2( K g ) are required
once per time step for each surface or grid edge plane. This leaves
only the computation of Eq. (9) to solve for the interior of the
mesh. This is a linear equation typically requiring 1–2 iterations
of a Gauss–Seidel procedure for moderate motions of the grid. Fi-
nally, the function P de� nes an outward normal to the surface.
Setting e = exp( ¡ C2k) ensures that at least several grid points near
the surface remain orthogonal to the surface. The complete mesh
solution per time step involves an update using initializationof the
mesh via trans� nite interpolation and a second step involving one
to two iterations of Eq. (9) to arrive at the � nal mesh.

Aeroelastic Method
The-time marching simulation of the aeroelastic responses is ob-

tained using the � nite-dimensional state-space predictor–corrector
method, described in Refs. 10 and 20, that solves the decoupled
modal structural equations of motion. Several versionsof the � nite-
dimensional state-space variable method are presented in Refs. 10
and 20. The predictor step marches the structure using the solution
of the modal equationsat step n to get the surface de� ection at time
step n + 1. This solution is based on a second-order (trapezoidal)
extrapolationof the generalizedaerodynamicforces at n and n ¡ 1.
This provides the surface shape for a recomputation of the � uid
mesh and the � uid-domain solution at n + 1. After a solution of
the � uid domain involvingmultiple subiterations,the corrector step
then solves the modal equations at the time step n + 1 using the
averaged generalized forces at n and n + 1.

Results
The results of this paper are aimed at assessing what is required

to compute unsteady two-dimensional spoiler and coupled spoiler
aeroelastic problems. Speci� cally, the issues addressed are the ge-
ometric modeling of spoilers and the convergence and time-step
behavior of the present � uid and aeroelastic solvers. In the follow-
ing cases the airfoil/spoiler geometry is based on the benchmark
active controls technology (BACT) NACA 0012 test model.21 The
spoiler is modeled here as a ramp and backward-facingstep. A two-
dimensional� uid mesh is shown in Fig. 2. The backwardstep behind
the spoiler trailing edge has a slight slope modeled by spacing three
grid points between the spoiler trailing edge and the wing surface.
This clearly does not model the cavity beneath the spoiler, nor the
gap between the spoilerand � ap leadingedge.As the spoiler moves,
the spacing over the backward step is constrained via arc length to
remain more or less true to the original grid spacing over the wing.
Spoiler motion is typically accomplished by shearing wing surface
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Fig. 2 Two-dimensional mesh for oscillating spoiler study.

Fig. 3 Time step study for two-dimensional NACA 0012 airfoil
with oscillating spoiler: M1 = 0.77, ® = 0 deg, and ®sp = ¡ 5 ¡
4.5 sin(2 M1 kt) deg.

grids or, at best, by using a two-coordinate modal control surface
motion, either of which results in surface warping. The present ap-
proach embodies true rigid-body control surface rotation.

The unsteady Navier–Stokes solutions in Fig. 3 investigate time
step convergence, which is important before launching into more
costly three-dimensionaloscillating spoiler computations.They are
especially challenging because they involve the growth and col-
lapse of a large region of recirculating � ow. They require signi� -
cantly more subiterations (50–60 at 64 time steps per cycle). This
computation also required tuning of the s -TS CFL for extremely
large physical time steps to reach reasonable accuracy at each time
step. Nevertheless, the convergence at each time step was carefully
monitored. The L2 norm was maintained at approximately 10 ¡ 7 or
better at each time step. This required 14 subiterationsper time step
at 256 time steps per cycle and 4 subiterationsat 1024 time steps per
cycle. As can be seen in Fig. 3, there is no discernabledifference in
the lift and moment coef� cients in going from 1024 to 64 time steps
per cycleof spoileroscillation.However, the out-of-phasepart of the
transformof theunsteadypressurecoef� cientshows some reduction
in accuracy for the larger time steps. Although all of the computa-
tions appear to be suf� ciently accurate for engineering purposes, it
is clear that for high accuracy, 260–300 time steps/cycle or more
are required. This is true, for example, for simulation of response
to control system input at a condition near � utter onset, which is
typically sensitive to the phase angle of the aerodynamic forcing.

The simulation of an aeroelastic transient induced by a single
oscillation of a two-dimensional spoiler for an airfoil subject to
pitch and plunge is presented in Figs. 4–6 and Tables 1 and 2. This
case provides a nominal test of the performance of the complete
� uid-mesh-structure solution technique. The aeroelastic response
is due to a single large-scale asymmetric oscillation of the spoiler.
The spoiler was oscillated at approximately the free vibration fre-
quency of the plunge mode. The dynamic pressure (q 1 =20 psf) is
low enough to give a moderate aeroelastic response for this size of
spoiler motion. After an aeroelasticresponseusing the mesh shown

Table 1 Computed damping ratios for two aeroelastic modesa

Time steps No. of � uid domain
D t (per plunge cycle) subiterations f h f a

0.0092 8192 2 0.02781 0.05229
0.0366 2048 6 0.02781 0.05230
0.1465 512 12 0.02779 0.05228
0.5859 128 32 0.02761 0.05218
aSame model and condition as Fig. 4.

Table 2 Effect of number of subiterations on damping ratioa

Time steps No. of � uid domain
D t (per plung cycle) subiterations f h

0.5859 128 32 0.02761
0.5859 128 20 0.02750
0.5859 128 8 0.02648
aSame model and condition as Fig. 4.

Fig. 4 Computedaeroelasticresponsedue to a single spoiler oscillation
(9.5-deg excursion), two-dimensional BACT model: M 1 = 0.77, ® =
0 deg, q 1 = 20 psf, and U 1 = 373 fps.

Fig. 5 Computedaeroelasticresponsedue to a single spoiler oscillation
(same model and condition as Fig. 4, D t = 0.5859).

Fig. 6 Comparison of t-TS and ¿ -TS time stepping for aeroelastic re-
sponse (same model and condition as Fig. 4).
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in Fig. 2 was computed, it was found that the aeroelastic transient
response was sensitive to grid spacing asymmetry between the up-
per and lower surfaces. A mesh that is symmetric and has the same
spacing over both the upper and lower surface was used as the � nal
grid. This grid had dimensions 319 £ 105. Furthermore, the quality
of the grid especiallyaround the spoiler region was found to consid-
erably impact the time-stepconvergenceof theaeroelasticsolutions.
After some effort at improving grid quality, the described solutions
were obtained.

The solutions of Fig. 4 give transient pitch and plunge response
calculated with four time-step sizes. Note that the maximum CFL
number for the largest time step (D t =0.5859) is approximately
2 £ 106 . The convergence of the plunge mode response with time
step size reductioncan be clearly seen in the detailed inset in Fig. 4.
Table 1 summarizes data from these runs. The � uid-domain subit-
erations shown in Table 1 are what were required to converge the
solution (L2 norm of density) to around 10 ¡ 7 at each time step. Be-
tween 2048 and 8192 time steps/plunge cycle, there is virtually no
difference in the damping ratios. Between the largest and smallest
time steps, the difference is less than 1%. The convergence of the
aeroelastic response with number of � uid-domain subiterations at
the largest time step can be seen in Fig. 5. It appears from Fig. 5
that 32 subiterations of the � uid domain per time step results in a
very nearly converged solution. One can also see from Fig. 5 and
from Table 2 that if less accuracy is required, fewer subiterations
will also result in a solution. On the other hand, a computation that
was performed using only a physical time step (t -TS subiteration)
was unstable for time steps larger than D t =0.001. The solution
at D t =0.0012, shown in Fig. 6, diverged shortly after the � nal
time step shown. Even if it had not diverged, this small time step
makes this problem solution infeasible with the t -TS method, and
necessitates CFL-based local time step subiteration (identi� ed as
s -TS in Fig. 6). The accuracy of the t -TS solution is clearly not
established with only one computation. However, if the solutions
with s -TS subiterations are converging to the correct solution, as it
would appear, the t-TS solutioneven at D t =0.001 does not appear
to be more accurate than the s -TS solution at a time step 100 times
larger.

Conclusions
A numerical scheme for the Euler and Navier–Stokes equations

in a generaldynamicallydeformingcoordinatesystem that incorpo-
rates the geometric conservation law into the governing equations
hasbeen evaluatedin thispaper.By casting the equationsin the form
shown here, a somewhat more economical scheme is obtained for
problems requiring deforming meshes. A structured mesh scheme,
based on the spring analogy, has been applied to moderately com-
plex surface geometry. Its performance has been assessed for time
steps spanning a large range, applied to problems from oscillat-
ing two-dimensional spoilers to the transient response of an airfoil.
The spoilers have been modeled as a ramp and backward step and
the oscillation by true rigid-body rotation. The mesh scheme does
not appear to result in mesh entanglement for the geometry and
mesh motion considered here even with an extremely large time
step (CFL ¼ 2 £ 106). This is due to the use of mesh initialization
via trans� nite interpolation, to the � uid mesh near the moving sur-
face undergoingmotion prescribedby the surface, and to the selec-
tive relaxing/stiffening of the spring stiffness in the spring analogy
scheme. Even at very large time steps, the scheme appears to retain
considerable accuracy if a suf� cient number of s -TS subiterations
are used. In the case of strongly nonlinear � ow driven by spoiler
oscillation,numerical results have shown that the error due to an in-
creasing time step that does arise is mainly in the out-of-phasecom-
ponent. This is expected for a second-order time-accurate scheme
and has implications for the accurate computation of � utter onset
and other aeroelasticphenomena.Finally, aeroelastic capability has
been demonstratedfor the damped transientsof a wing having pitch
and plunge modes.The case computedwas at low dynamic pressure
in which the modes were initially perturbed by a single-large-scale
oscillation of the spoiler surface. The results show that accuracy
at very large-time-step sizes, similar to that used in the oscillating

spoiler computations, can be achieved here as well. This suggests
that for these cases and this solutionmethod, the convergenceof the
� uid solution is a dominant factor in the accuracy of the structure–

� uid solution. Again, this is possible because of the s -TS � ow� eld
solution. Because of stability limitations, the largest time step pos-
sible with t -TS subiteration was at least 600 times smaller than the
largest time step with s -TS subiteration.
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